Package: meshed 0.3
Michele Peruzzi
meshed: Bayesian Regression with Meshed Gaussian Processes
Fits Bayesian regression models based on latent Meshed Gaussian Processes (MGP) as described in Peruzzi, Banerjee, Finley (2020) <doi:10.1080/01621459.2020.1833889>, Peruzzi, Banerjee, Dunson, and Finley (2021) <arxiv:2101.03579>, Peruzzi and Dunson (2024) <arxiv:2201.10080>. Funded by ERC grant 856506 and NIH grant R01ES028804.
Authors:
meshed_0.3.tar.gz
meshed_0.3.zip(r-4.5)meshed_0.3.zip(r-4.4)meshed_0.3.zip(r-4.3)
meshed_0.3.tgz(r-4.4-x86_64)meshed_0.3.tgz(r-4.4-arm64)meshed_0.3.tgz(r-4.3-x86_64)meshed_0.3.tgz(r-4.3-arm64)
meshed_0.3.tar.gz(r-4.5-noble)meshed_0.3.tar.gz(r-4.4-noble)
meshed_0.3.tgz(r-4.4-emscripten)meshed_0.3.tgz(r-4.3-emscripten)
meshed.pdf |meshed.html✨
meshed/json (API)
NEWS
# Install 'meshed' in R: |
install.packages('meshed', repos = c('https://mkln.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mkln/meshed/issues
bayesianmcmcmultivariateregressionspatialspatiotemporal
Last updated 3 months agofrom:923fd69dd6. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-win-x86_64 | WARNING | Nov 10 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 10 2024 |
R-4.4-win-x86_64 | WARNING | Nov 10 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 10 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 10 2024 |
R-4.3-win-x86_64 | WARNING | Nov 10 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 10 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 10 2024 |
Exports:rmeshedgpspmeshedsummary_list_meansummary_list_q
Dependencies:clidplyrfansiFNNgenericsgluelifecyclemagrittrpillarpkgconfigR6RcppRcppArmadillorlangtibbletidyselectutf8vctrswithr
MGPs for multivariate data at irregularly spaced locations
Rendered frommultivariate_irregular.Rmd
usingknitr::rmarkdown
on Nov 10 2024.Last update: 2022-09-17
Started: 2021-06-09
MGPs for univariate data at irregularly spaced locations
Rendered fromunivariate_irregular.Rmd
usingknitr::rmarkdown
on Nov 10 2024.Last update: 2022-09-17
Started: 2021-06-09
MGPs for univariate spatial gridded data
Rendered fromunivariate_gridded.Rmd
usingknitr::rmarkdown
on Nov 10 2024.Last update: 2022-09-17
Started: 2021-06-09
MGPs for univariate non-Gaussian data at irregularly spaced locations
Rendered fromunivariate_irregular_poisson.Rmd
usingknitr::rmarkdown
on Nov 10 2024.Last update: 2022-09-17
Started: 2021-06-09
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Methods for fitting models based on Meshed Gaussian Processes (MGPs) | meshed-package meshed |
Posterior predictive sampling for models based on MGPs | predict.spmeshed |
Prior sampling from a Meshed Gaussian Process | rmeshedgp |
Posterior sampling for models based on MGPs | spmeshed |
Arithmetic mean of matrices in a list | summary_list_mean |
Quantiles of elements of matrices in a list | summary_list_q |